

Universidade Federal do Rio de Janeiro

4TH SYMPOSIUM ON THE CASIMIR EFFECT

TWO-PHOTON SPONTANEOUS EMISSION IN A PHOTONIC CAVITY

By: Yuri Muniz de Souza

Collaborators: D. Szilard, W.J.M. Kort-Kamp, F.S.S. Rosa, C. Farina.

June 27th, 2019

SPONTANEOUS EMISSION (SE)

• An **excited atom**, even when isolated, **decays** to its fundamental state.

- Phenomenon induced by **quantum vacuum fluctuations**.
- Quantum electrodynamics (QED): excited atom + zero photons is not a stationary state of the atom-field system.

SEMost of the light we see is from SE.

PURCELL EFFECT

- E.M. **Purcell** (**1946**): bodies in the vicinities of an emitter change its SE rate.
- Reason: the presence of the bodies affects the **boundary conditions** (BC) on the electromagnetic field.

$$\Gamma(\mathbf{R}) = \frac{\pi}{\epsilon_o \hbar} \sum_{\mathbf{k}p} \omega_k |\mathbf{d}_{eg} \cdot \mathbf{A}_{\mathbf{k}p}(\mathbf{R})|^2 \delta(\omega_k - \omega_{eg}).$$
$$\frac{\Gamma}{\Gamma_o} = \frac{6\pi c}{\omega_{eg}} \mathbf{\hat{n}}_{eg}^* \cdot \left[\mathrm{Im}\mathbb{G}(\mathbf{R}, \mathbf{R}, \omega_{eg}) \right] \cdot \mathbf{\hat{n}}_{eg},$$
$$\nabla \times \nabla \times \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) - \frac{\omega^2}{2} \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \mathbb{I}\delta(\mathbf{r} - \mathbf{r}').$$

L. Novotny and B. Hecht, Principles of nano-optics. Cambridge university press, 2012.

PURCELL EFFECT ON THE ONE-PHOTON SE

TWO-PHOTON SPONTANEOUS EMISSION (TPSE)

- Second order process in perturbation theory.
- Relevant process when the one-photon SE is forbidden, as for intance, due to **selection rules**.
- Ex: **2s 1s** transition in **H**.
- Broadband spectrum of emission.

• Explains the emission spectrum of planetary nebulae. L. Spitzer and J. L. Greenstein, The Astrophysical Journal, vol. 114, p. 407 (1951).

PURCELL EFFECT ON THE TPSE

• Not widely discussed in the literature.

- The progress in **near-field optics, plasmonics,** and **materials science** in general has improved our **control** over **radiation-matter interactions**.
- In some situations the TPSE can even dominate conventionally fast transitions!

N. Rivera *et al*, "Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons", PNAS, p. **201713538** (2017)

• TPSE is a rich phenomenon, with very much to be explored yet.

GREEN'S FUNCTION METHOD

• The imaginary part of the Green's function can be written in terms of the field modes as

Im
$$\mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \frac{\pi c^2}{2\omega} \sum_{\mathbf{k}p} \mathbf{A}^*_{\mathbf{k}p}(\mathbf{r}') \mathbf{A}_{\mathbf{k}p}(\mathbf{r}) \delta(\omega - \omega_k).$$

• Using the previous identity, we recover the well known expression for the TPSE rate, namely

$$\Gamma = \frac{\mu_0^2}{\pi\hbar^2} \int_0^{\omega_{eg}} d\omega \omega^2 (\omega_{eg} - \omega)^2 \mathrm{Im}\mathbb{G}_{il}(\omega) \mathrm{Im}\mathbb{G}_{jn}(\omega_{eg} - \omega)\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)\mathbb{D}_{ln}^*(\omega, \omega_{eg} - \omega).$$

N. Rivera et al., Science, vol. 353, no. 6296, pp. 263–269 (2016).

• This constitutes an **alternative demonstration** of this formula!

THE PURCELL FACTORS RELATION

• Choosing the basis which diagonalizes the Green's function we have

$$\gamma(\omega) = \frac{\mu_0^2}{\pi\hbar^2} \omega^2 (\omega_{eg} - \omega)^2 \sum_{i,j} \operatorname{Im}\mathbb{G}_{ii}(\omega) \operatorname{Im}\mathbb{G}_{jj}(\omega_{eg} - \omega) |\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2$$

• We define the **Purcell factors** as

$$P_i(\mathbf{R},\omega) := \frac{6\pi c}{\omega} \mathrm{Im}\mathbb{G}_{ii}(\mathbf{R},\mathbf{R},\omega).$$

• In this way, we can write

$$\frac{\gamma(\omega)}{\gamma_o(\omega)} = \sum_{i,j} \frac{|\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2}{|\mathbb{D}(\omega, \omega_{eg} - \omega)|^2} P_i(\omega) P_j(\omega_{eg} - \omega).$$

• The **TPSE** rate **dependence** on the **local density of states** (LDOS) was made explicit!

AN EMITTER NEAR A HALF-SPACE DIELECTRIC MEDIUM (S \rightarrow S)

By symmetry, the Green's function is diagonal in the cartesian basis.

AN EMITTER BETWEEN TWO PERFECT MIRRORS (S \rightarrow S)

AN EMITTER BETWEEN TWO PERFECT MIRRORS (S \rightarrow S)

CONCLUSIONS

- We obtained a new formula for computing the **TPSE rate** in terms of the **field modes**.
- We have shown its **equivalence** with the more usual **Green's function expression**.
- We derived a simple relation between the TPSE spectral density and the corresponding **Purcell factors**.
- For an emitter near a **dielectric**, the TPSE spectral density changes abruptly at the **resonance frequencies**.
- For an emitter placed between **two parallel mirrors**, ¹⁵ complete supression never occurs for s→s transitions.

THANK YOU