TAILORING TWO-PHOTON SPONTANEOUS EMISSION USING ATOMICALLY THIN PLASMONIC NANOSTRUCTURES

Yuri Muniz

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Universidad Zaragoza

March 2nd, 2020

Collaborators: A. Manjavacas, C. Farina, D.A.R. Dalvit, W.J.M. Kort-Kamp.

A brief introduction about spontaneous emission

SPONTANEOUS EMISSION (SE)

 An **excited atom**, even when isolated, **decays** to its fundamental state.

- Phenomenon induced by **quantum vacuum fluctuations**.
- Quantum electrodynamics (QED): excited atom + zero photons is not a stationary state of the atom-field system.

SE Most of the light we see is from SE.

PURCELL EFFECT

- E.M. **Purcell** (**1946**): Bodies in the vicinities of an emitter change its SE rate.
- Reason: The presence of the bodies affects the **boundary conditions** (BC) on the electromagnetic field.

$$
\Gamma(\mathbf{R})=\frac{\pi}{\epsilon_o\hbar}\sum_{\mathbf{k}p}\omega_k|\mathbf{d}_{eg}\cdot\mathbf{A}_{\mathbf{k}p}(\mathbf{R})|^2\delta(\omega_k-\omega_{eg})
$$

o It can be shown that the SE rate is proportional to the local density of states (**LDOS**) of the electromagnetic field.

L. Novotny and **B. Hecht**, *Principles of nano-optics*. Cambridge university press, 2012.

PURCELL EFFECT ON THE ONE-PHOTON SE

TWO-PHOTON SPONTANEOUS EMISSION (TPSE)

- **Second order process** in perturbation theory (**Göppert-Mayer**, **1931**).
- Relevant process when the one-photon SE is forbidden, for instance, due to **selection rules**.
- **o** Ex: 2s 1s transition in **H**(Breit, Teller, 1940). $\tau \approx 1/7s$
- **o Broadband** spectrum of emission.
- Explains the emission spectrum of planetary nebulae. **L. Spitzer and J. L. Greenstein**, The Astrophysical Journal, vol. **114**, p. **407 (1951)**.

PURCELL EFFECT ON THE TPSE

Not widely discussed in the literature.

- The progress in **near-field optics, plasmonics,** and **materials science** in general has improved our **control** over **radiation-matter interactions**.
- In some situations the TPSE can even dominate conventionally fast transitions!

N. Rivera *et al*, "*Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons*", PNAS, p. **201713538** (**2017**)

 TPSE is a rich phenomenon, with very much to be explored yet.

AN EMITTER BETWEEN TWO PERFECT MIRRORS $(s \rightarrow s)$

Abrupt changes in the spectral density due to discontinuities in the LDOS.

AN EMITTER BETWEEN TWO PERFECT MIRRORS $(s \rightarrow s)$

RELATION BETWEEN TPSE AND ONE-PHOTON SE **o** It is possible to show that

$$
\Gamma(\mathbf{R}_e) = \int_0^{\omega_t} d\omega \gamma_0(\omega) \sum_{a,b} t_{ab}(\omega) P_a(\mathbf{R}_e, \omega) P_b(\mathbf{R}_e, \omega_t - \omega)
$$

$$
t_{ab}(\omega) = |\mathbb{D}_{ab}(\omega, \omega_t - \omega)|^2 / |\mathbb{D}(\omega, \omega_t - \omega)|^2
$$

 $P_a(\mathbf{R}_e,\omega)$

 Once we know the **one-photon S**E rate of an emitter we can obtain immediately the **TPSE spectral density**!

TPSE near plasmonic nanostructures

PLASMONICS

What is a plasmon?

PLASMONICS

What is plasmonics?

"You just have Maxwell's equations, some material properties and some boundary conditions, all classical stuff - what's new about that?''

> **S. A. Maier***, Plasmonics: fundamentals and applications*.

Physics!

- \bullet Strong light confinement \rightarrow beyond the diffraction limit.
- Extreme enhancement of the electromagnetic field intensity \rightarrow surface physics and **non-linear optics**.

Spatially resolved optical sensing in the infrared PLASMONICS IN 2D SYSTEMS - GRAPHENE

•ACS Photonics 2017, 4, 1831−1838 •*ACS Photonics* 2018, 5, 8, 3282-3290

Ultrafast radiative heat transfer

Nature Communications**, 8**, 2 (2017)

(QUASI-)2D NOBLE METALS

Wide range of frequencies (visible and near-infrared)

Recent fabrication of quasi-2D metal films.

•ACS NANO,**13**, 7 (2019) •Nature Photonics, **8**, 328- 333 (2019)

SYSTEM UNDER STUDY

 An emitter near a 2D plasmonic nanostructure of arbitrary geometry.

PLASMONS IN 2D NANOSTRUCTURES

Plasmon Wave Function (**PWF**) formalism:

$$
\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}) \longrightarrow Plasmon \ Wave \ Function \ j
$$

o Resonance frequencies:

 $\eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$ $\text{Re}[1/\eta_{i} - 1/\eta(\omega_{i})] = 0$

PLASMONS IN 2D NANOSTRUCTURES

Plasmon Wave Function (**PWF**) formalism:

$$
\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}) \longrightarrow \text{Plasmon Wave Function } j
$$

o Resonance frequencies:

 $\eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$ $\text{Re}[1/\eta_i - 1/\eta(\omega_i)] = 0$ Excelent agreement with numerical calculations.

PURCELL FACTORS

 The Purcell factors are numerically equal to the ratio between the power dissipated by an electric dipole near the nanostructure with respect to its free-space radiation rate.

 $P_a(\mathbf{R}_e,\omega) = W_a(\mathbf{R}_e,\omega)/W_0(\omega)$

PURCELL FACTORS

 The Purcell factors are numerically equal to the ratio between the power dissipated by an electric dipole near the nanostructure with respect to its free-space radiation rate.

$$
P_a(\mathbf{R}_e,\omega) = W_a(\mathbf{R}_e,\omega)/W_0(\omega)
$$

$$
P_a(\mathbf{R}_e, \omega) = P_{a, nr}(\mathbf{R}_e, \omega) + P_{a, r}(\mathbf{R}_e, \omega)
$$

Absorption (**plasmon emission**):

$$
P_{a,nr}(\mathbf{R}_e,\omega) = \frac{6\pi\epsilon_0 c^3}{\omega^4 |\mathbf{d}_a|^2} \int d^3\mathbf{R}' \text{Re}\{\mathbf{J}^*(\mathbf{R}',\omega) \cdot \mathbf{E}(\mathbf{R}',\omega)\}
$$

Far-field radiation (**photon emission**):

 $P_{a,r}(\mathbf{R}_e,\omega)=\frac{6\pi\epsilon_0c^3}{\omega^4|\mathbf{d}_e|^2}\int_{\mathbf{R}'}d\mathbf{A'}\cdot\mathrm{Re}\{\mathbf{E}(\mathbf{R'},\omega)\times\mathbf{H}^*(\mathbf{R'},\omega)\}\,$

TPSE DECAY CHANNELS

$$
\gamma(\mathbf{R}_e, \omega) = \gamma_0(\omega) \sum_{a,b} t_{ab}(\omega) P_a(\mathbf{R}_e, \omega) P_b(\mathbf{R}_e, \omega_t - \omega)
$$

$$
P_a(\mathbf{R}_e, \omega) = P_{a,nr}(\mathbf{R}_e, \omega) + P_{a,r}(\mathbf{R}_e, \omega)
$$

 Photon-photon, photon-plasmon and plasmon-plasmon states.

APPROXIMATED PURCELL FACTORS: DRUDE MODEL

$$
P_{a,nr}(\mathbf{R}_e,\omega) \simeq \sum_{q=1}^N \frac{A_{a,q}}{\omega^2} \frac{1/2\tau}{(\omega - \omega_q)^2 + (1/2\tau)^2}
$$

Plasmonic contribution **Lorentzian resonances**

APPROXIMATED PURCELL FACTORS: DRUDE MODEL

$$
P_{a,nr}(\mathbf{R}_e,\omega)\simeq\sum_{q=1}^N\frac{A_{a,q}}{\omega^2}\frac{1/2\tau}{(\omega-\omega_q)^2+(1/2\tau)^2}
$$

Plasmonic contribution **Lorentzian resonances**

$$
P_{a,r}(\omega) \simeq \sum_{q=1}^{N} \frac{B_{a,q}(1/2\tau)^2 + (\omega - \omega_q + f_{a,q}/2\tau)^2}{(\omega - \omega_q)^2 + (1/2\tau)^2} - (N-1)
$$

Photonic contribution \rightarrow **Fano** $+$ **Lorentzian resonances**

APPROXIMATED RESULTS: DRUDE MODEL

 ω

A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: RESONANT MODES

can be **tuned** by changing the **size** of the nanodisk.

A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: TPSE SPECTRUM

 Crossings between **Bright-Bright** or **Dark-Dark** modes produce **extreme enhancements**.

A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: DECAY CHANNELS

 Spectral line-shapes serve as **fingerprints** of the three **decay channels**. $10³$

DYNAMICAL CONTROL OF TPSE WITH A GRAPHENE NANODISK

 Enhanced selective spectral emission compared to the typical broadband spectrum of monolayers.

DYNAMICAL CONTROL OF TPSE WITH A GRAPHENE NANODISK

$$
QY^{1q}(\omega) = \frac{\gamma_{ph}^{1q}(\omega)}{\gamma^{1q}(\omega)}, \quad QY^{TPSE}(\omega) = \frac{\gamma_{ph,ph}(\omega) + \gamma_{ph,pl}(\omega)}{\gamma(\omega)}
$$
\n
$$
I_{\text{D1}} \quad \text{QY^{TPSE}} \quad \text{D2Y^{TPSE}}
$$
\n
$$
I_{\text{D3}} \quad \text{D3Y^{TPSE}} \quad \text{D4Y^{1q}}
$$
\n
$$
I_{\text{D4Y^{1q}}} \quad \text{D5Y^{1q}}
$$
\n
$$
I_{\text{D5Y^{1q}}} \quad \text{D6Y^{1q}}
$$
\n
$$
I_{\text{D6Y}} \quad \text{D7Y^{1q}}
$$
\n
$$
I_{\text{D7Y^{1q}}} \quad \text{D8Y^{1q}}
$$
\n
$$
I_{\text{D8Y^{1q}}} \quad \text{D9Y^{1q}}
$$
\n
$$
I_{\text{D9Y^{1q}}} \quad \text{D1Y^{1q}}
$$
\n
$$
I_{\text{D1Y^{1q}}} \quad \text{D2Y^{1q}}
$$
\n
$$
I_{\text{D2Y^{1q}}}
$$
\n
$$
I_{\text{D3Y^{1q}}} \quad \text{D1Y^{1q}}
$$
\n
$$
I_{\text{D4Y^{1q}}} \quad \text{D2Y^{1q}}
$$
\n
$$
I_{\text{D5Y^{1q}}} \quad \text{D3Y^{1q}}
$$
\n
$$
I_{\text{D6Y}} \quad \text{D4Y^{1q}}
$$
\n
$$
I_{\text{D7Y^{1q}}}
$$
\n
$$
I_{\text{D8Y^{1q}}} \quad \text{D5Y^{1q}}
$$
\n
$$
I_{\text{D9Y^{1q}}}
$$
\n
$$
I_{\text{D1Y^{1q}}}
$$
\n
$$
I_{\text{D2Y
$$

 Single photon creation via a two-quanta process can be much more efficient than standard one-photon emission.

$$
QE = \Gamma_{4s \to 3s} / (\Gamma_{4s \to 3s} + \gamma_{4s \to 3p}^{1q} + \gamma_{4s \to 2p}^{1q})
$$

 For any disk diameter the quantum efficiency can be optimized by tuning the Fermi energy so that $\omega_{B_1} = \omega_t/2$.

$$
\mu = 10^4 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}
$$

Numbers near curves: **ph-ph Purcell factors**

CONCLUSIONS

- It is possible to pre-select the frequencies of emission by tuning the size and doping of the nanostructure.
- 2D plasmonic nanostructures allow enhanced TPSE rate with **generation of photons**, not only plasmons.
- Surprisingly, **TPSE** can be a **single photon source** orders of magnitude more efficient than one-photon SE.
- **Finite-sized** plasmonic systems have many **advantages** over **extended** ones.

THANK YOU!

A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: PH-PH DECAY CHANNEL

 Finite size is critical to accomplish **giant photonphoton production**.

DYNAMICAL CONTROL OF TPSE WITH A GRAPHENE NANODISK

 Graphene nanostructures disrupt the usual unbalance between one- and two-quanta emission.

$$
QE = \Gamma_{4s \to 3s} / (\Gamma_{4s \to 3s} + \gamma_{4s \to 3p}^{1q} + \gamma_{4s \to 2p}^{1q})
$$

PURCELL EFFECT

- E.M. **Purcell** (**1946**): bodies in the vicinities of an emitter change its SE rate.
- **o** Reason: the presence of the bodies affects the **boundary conditions** (BC) on the electromagnetic field.

$$
\Gamma(\mathbf{R}) = \frac{\pi}{\epsilon_o \hbar} \sum_{\mathbf{k}p} \omega_k |\mathbf{d}_{eg} \cdot \mathbf{A}_{\mathbf{k}p}(\mathbf{R})|^2 \delta(\omega_k - \omega_{eg}).
$$

$$
\frac{\Gamma}{\Gamma_o} = \frac{6\pi c}{\omega_{eg}} \mathbf{\hat{n}}_{eg}^* \cdot [\text{Im}\mathbb{G}(\mathbf{R}, \mathbf{R}, \omega_{eg})] \cdot \mathbf{\hat{n}}_{eg},
$$

$$
\nabla \times \nabla \times \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) - \frac{\omega^2}{c^2} \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \mathbb{I}\delta(\mathbf{r} - \mathbf{r}').
$$

L. Novotny and **B. Hecht**, *Principles of nano-optics*. Cambridge university press, 2012.

GREEN'S FUNCTION METHOD

 The imaginary part of the Green's function can be written in terms of the field modes as

Im
$$
\mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \frac{\pi c^2}{2\omega} \sum_{\mathbf{k}p} \mathbf{A}_{\mathbf{k}p}^*(\mathbf{r}') \mathbf{A}_{\mathbf{k}p}(\mathbf{r}) \delta(\omega - \omega_k).
$$

 Using the previous identity, we recover the well known expression for the TPSE rate, namely

$$
\Gamma = \frac{\mu_0^2}{\pi \hbar^2} \int_0^{\omega_{eg}} d\omega \omega^2 (\omega_{eg} - \omega)^2 \text{Im} \mathbb{G}_{il}(\omega) \text{Im} \mathbb{G}_{jn}(\omega_{eg} - \omega) \mathbb{D}_{ij}(\omega, \omega_{eg} - \omega) \mathbb{D}_{ln}^*(\omega, \omega_{eg} - \omega).
$$

N. Rivera et al., Science, vol. **353**, no. **6296**, pp. **263–269** (**2016**).

 This constitutes an **alternative demonstration** of this formula!

THE PURCELL FACTORS RELATION

 Choosing the basis which diagonalizes the Green's function we have

$$
\gamma(\omega) = \frac{\mu_0^2}{\pi \hbar^2} \omega^2 (\omega_{eg} - \omega)^2 \sum_{i,j} \text{Im} \mathbb{G}_{ii}(\omega) \text{Im} \mathbb{G}_{jj} (\omega_{eg} - \omega) |\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2.
$$

We define the **Purcell factors** as

$$
P_i(\mathbf{R},\omega) := \frac{6\pi c}{\omega} \text{Im}\mathbb{G}_{ii}(\mathbf{R},\mathbf{R},\omega).
$$

o In this way, we can write

$$
\frac{\gamma(\omega)}{\gamma_o(\omega)} = \sum_{i,j} \frac{|\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2}{|\mathbb{D}(\omega, \omega_{eg} - \omega)|^2} P_i(\omega) P_j(\omega_{eg} - \omega).
$$

 The **TPSE** rate **dependence** on the **local density of states** (LDOS) was made explicit!

PLASMONS IN 2D NANOESTRUCTURES

Plasmon Wave Function (**PWF**) formalism:

$$
\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}),
$$

 $v_i(\mathbf{u}) = \nabla_{\mathbf{u}} \cdot \sqrt{f(\mathbf{u}) \mathbf{V}_i(\mathbf{u}) + P}$ *Plasmon Wave Functions* $\int d^2\mathbf{u}' \, \mathbb{M}(\mathbf{u},\mathbf{u}') \cdot \mathbf{V}_j(\mathbf{u}') = \frac{1}{\eta_j} \mathbf{V}_j(\mathbf{u}) \, .$ $\mathbb{M}(\mathbf{u}, \mathbf{u}') = \sqrt{f(\mathbf{u})f(\mathbf{u}')}\nabla_{\mathbf{u}}\nabla_{\mathbf{u}'}|\mathbf{u} - \mathbf{u}'|^{-1}$

o Resonance frequencies:

 $\eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$ $\text{Re}[1/\eta_i - 1/\eta(\omega_i)] = 0$

External field dependence:

$$
c_j = \int d^2 \mathbf{u} \, \mathbf{V}_j^*(\mathbf{u}) \cdot \mathbf{\mathcal{E}}^{ext}(\mathbf{u}, \omega)
$$

•ACS Photonics 2017, 4, 3106−3114 •*Faraday Discussions* 2015, 178, 87-107

POWER DISSIPATED BY ABSORPTION

$$
\mathbf{J}(\mathbf{R}', \omega) = \mathbf{K}(\mathbf{r}', \omega)\delta(z') = \sigma(\omega)f(\mathbf{r}')\mathbf{E}_{\parallel}(\mathbf{r}', \omega)\delta(z')
$$

\n
$$
\mathbf{F}(\mathbf{u}, \omega) = \sum_{\alpha} \frac{c_{\alpha}}{1 - \eta(\omega)/\eta_{\alpha}} \mathbf{V}_{\alpha}(\mathbf{u}), c_{\alpha} = \int d^{2} \mathbf{u} \mathbf{V}_{\alpha}^{*}(\mathbf{u}) \cdot \mathbf{E}^{ext}(\mathbf{u}, \omega)
$$

\n
$$
\mathbf{E}^{ext}(\mathbf{R}', \omega) = \frac{1}{4\pi\epsilon_{0}} \nabla d_{a} \cdot \nabla |\mathbf{R} - \mathbf{R}'|^{-1}
$$

\n
$$
\mathbf{F}_{d}^{2} \mathbf{u} \mathbf{V}_{\alpha}^{*}(\mathbf{u}) \cdot \mathbf{V}_{\alpha'}(\mathbf{u}) = \delta_{\alpha\alpha'}.
$$

\n
$$
P_{a,nr}(\mathbf{R}_{e}, \omega) = \frac{3c^{3}}{2D^{3}\omega^{3}} \text{Im} \sum_{\alpha} \hat{\mathbf{e}}_{a} \cdot \frac{\mathbf{F}_{\alpha}(\mathbf{R}_{e}) \otimes \mathbf{F}_{\alpha}^{*}(\mathbf{R}_{e})}{1/\eta(\omega) - 1/\eta_{\alpha}} \cdot \hat{\mathbf{e}}_{a}.
$$

\n
$$
\mathbf{F}_{\alpha}(\mathbf{R}_{e}) = \int d^{2} \mathbf{u}' \frac{v_{\alpha}(\mathbf{u}')(\mathbf{R}_{e}/D - \mathbf{u}')}{|\mathbf{R}_{e}/D - \mathbf{u}'|^{3}}
$$

POWER DISSIPATED BY RADIATION

 The system is spatially localized, therefore we can make a multipole expansion. The first contribution to the power radiated by the system is

$$
P_{a,r}(\mathbf{R}_e, \omega) \simeq \frac{|\mathbf{d}_a + \mathbf{d}_{a,ind}(\mathbf{R}_e, \omega)|^2}{|\mathbf{d}_a|^2}
$$

$$
\mathbf{d}_{a,ind}(\mathbf{R}_e, \omega) = \int d^2 \mathbf{r} \, \mathbf{r} \rho_{2D}(\mathbf{r}, \omega)
$$

$$
\rho_{2D}(\mathbf{r}, \omega) = \frac{4\pi\epsilon_0}{D} \sum_{\alpha} \frac{c_{\alpha}}{1/\eta_{\alpha} - 1/\eta(\omega)} v_{\alpha}(\mathbf{u})
$$

$$
P_{a,r}(\mathbf{R}_e, \omega) = \left| \hat{\mathbf{e}}_a + \sum_{\alpha} \frac{\zeta_{\alpha} \otimes \mathbf{F}_{\alpha}^*(\mathbf{R}_e)}{1/\eta_{\alpha} - 1/\eta(\omega)} \cdot \hat{\mathbf{e}}_a \right|^2. \quad \zeta_{\alpha} = \int d^2 \mathbf{u} \, \mathbf{u} v_{\alpha}(\mathbf{u})
$$

APPROXIMATED RESULTS: DRUDE MODEL

$$
P_{a,nr}(\mathbf{R}_e, \omega) \simeq \sum_{q=1}^N \frac{A_{a,q}}{\omega^2} \frac{1/2\tau}{(\omega - \omega_q)^2 + (1/2\tau)^2}
$$

$$
A_{a,q} = \frac{3c^3 \omega_p^2 t}{16\pi D^4 \omega_q^2} \sum_{j=1}^{g_q} |\hat{\mathbf{e}}_a \cdot \mathbf{F}_{q,j}(\mathbf{R}_e)|^2.
$$

$$
P_{a,r}(\omega) \simeq \sum_{q=1}^{N} \frac{B_{a,q}(1/2\tau)^{2} + (\omega - \omega_{q} + f_{a,q}/2\tau)^{2}}{(\omega - \omega_{q})^{2} + (1/2\tau)^{2}} - (N-1)
$$

$$
f_{a,q} = \frac{\omega_{p}^{2} \tau t}{4\pi D \omega_{q}} \sum_{j=1}^{g_{q}} \text{Re}\left[\hat{\mathbf{e}}_{a} \cdot \mathbf{F}_{q,j}^{*}(\mathbf{R}_{e}) \zeta_{a;q,j}^{\parallel}\right]
$$

PLASMONS IN 2D NANOSTRUCTURES

How do we obtain the PWFs?

PLASMONS IN A NANODISK

Analytical solution!

PWFs =
$$
R_{ln}(u)e^{il\phi}
$$
. $R_{ln}(u) = (2u)^{|l|} \sum_{m'} a_{m'}^{ln} P_{m'}^{(|l|,0)} (1 - 8u^2)$

$$
\mathbb{G}^l \mathbf{a}^{ln} = -4\pi \eta_{ln} \mathbb{K}^l \mathbf{a}^{ln},
$$

$$
\mathbb{K}_{mm'}^l = \frac{(-1)^{m-m'+1}}{\pi[4(m-m')^2 - 1] (|l| + m + m' + 1/2)(|l| + m + m' + 3/2)}, \quad m, m' = 0, 1, 2, 3...
$$

$$
\mathbb{G}_{mm'}^{l} = \frac{\delta_{m0}\delta_{m'0}}{8|l|(|l|+1)^2} + \frac{\delta_{mm'}}{4(|l|+2m')(|l|+2m'+1)(|l|+2m'+2)} + \frac{\delta_{m+1,m'}}{8(|l|+2m+1)(|l|+2m+2)(|l|+2m+3)} + \frac{\delta_{m,m'+1}}{8(|l|+2m'+1)(|l|+2m'+2)(|l|+2m'+3)}, \quad m, m' = 0, 1, 2, 3...
$$

•PRB 1986, **33,** 5221 •PRB 2016, **93,** 035426