TAILORING TWO-PHOTON SPONTANEOUS EMISSION USING ATOMICALLY THIN PLASMONIC NANOSTRUCTURES

Yuri Muniz

Universidade Federal do Rio de Janeiro

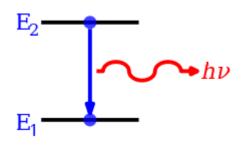
March 2nd, 2020

Collaborators: A. Manjavacas, C. Farina, D.A.R. Dalvit, W.J.M. Kort-Kamp.

A brief introduction about spontaneous emission

SPONTANEOUS EMISSION (SE)

• An **excited atom**, even when isolated, **decays** to its fundamental state.

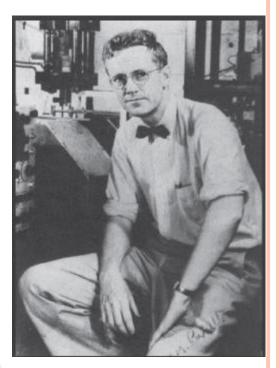


- Phenomenon induced by **quantum vacuum fluctuations**.
- Quantum electrodynamics (QED): excited atom + zero photons is not a stationary state of the atom-field system.

SEMost of the light we see is from SE.

PURCELL EFFECT

- E.M. **Purcell** (**1946**): Bodies in the vicinities of an emitter change its SE rate.
- Reason: The presence of the bodies affects the **boundary conditions** (BC) on the electromagnetic field.

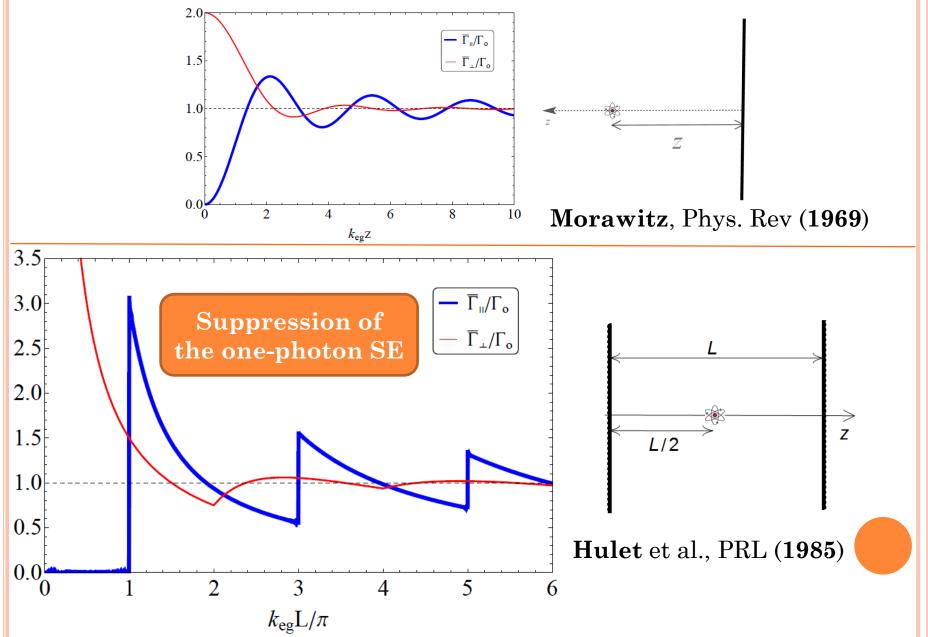


$$\Gamma(\mathbf{R}) = \frac{\pi}{\epsilon_o \hbar} \sum_{\mathbf{k}p} \omega_k |\mathbf{d}_{eg} \cdot \mathbf{A}_{\mathbf{k}p}(\mathbf{R})|^2 \delta(\omega_k - \omega_{eg})$$

• It can be shown that the SE rate is proportional to the local density of states (LDOS) of the electromagnetic field.

L. Novotny and B. Hecht, Principles of nano-optics. Cambridge university press, 2012.

PURCELL EFFECT ON THE ONE-PHOTON SE



TWO-PHOTON SPONTANEOUS EMISSION (TPSE)

- Second order process in perturbation theory (Göppert-Mayer, 1931).
- Relevant process when the one-photon SE is forbidden, for instance, due to **selection rules**.
- Ex: 2s 1s transition in H(Breit, Teller, 1940). $\tau \approx 1/7s$
- Broadband spectrum of emission.
- Explains the emission spectrum of planetary nebulae. L. Spitzer and J. L. Greenstein, The Astrophysical Journal, vol. 114, p. 407 (1951).

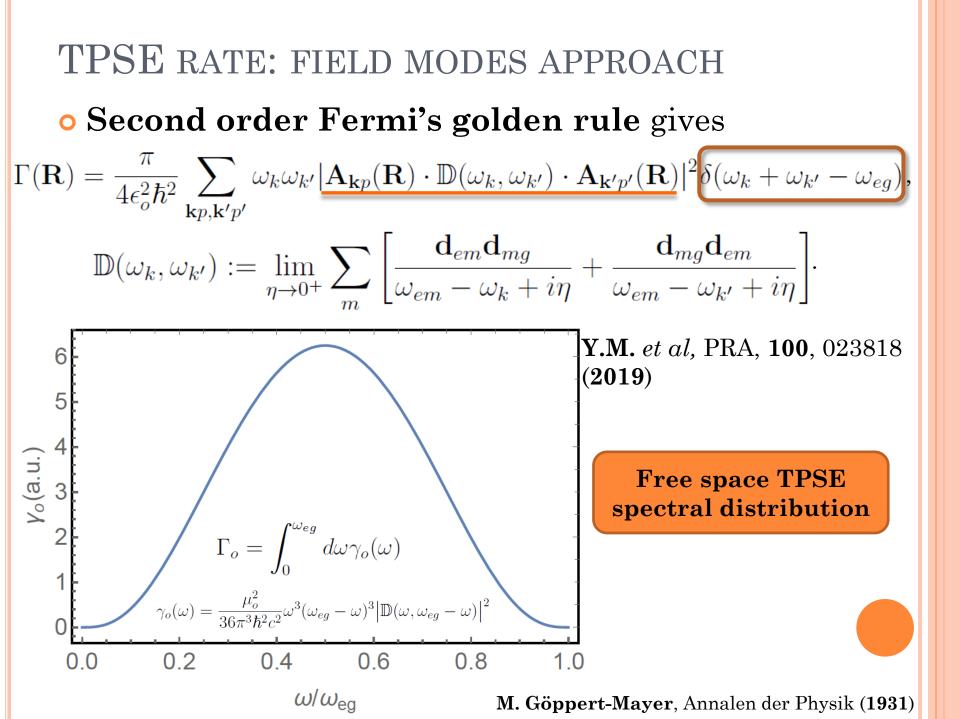
PURCELL EFFECT ON THE TPSE

• Not widely discussed in the literature.

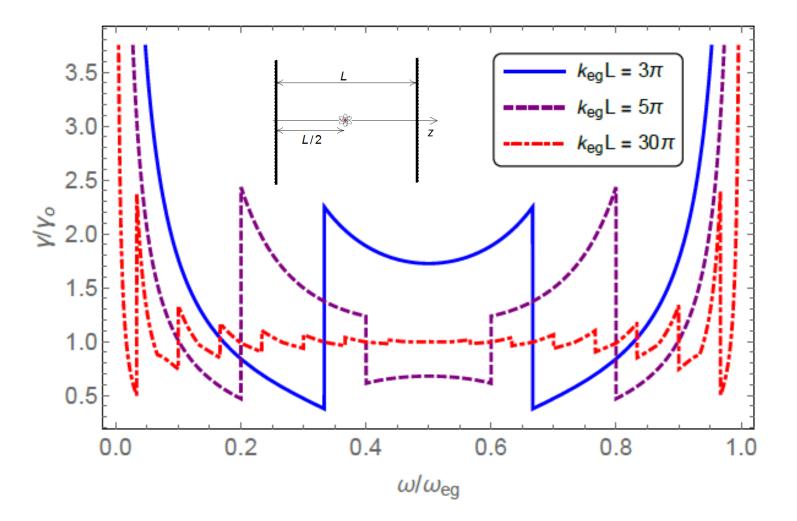
- The progress in **near-field optics, plasmonics,** and **materials science** in general has improved our **control** over **radiation-matter interactions**.
- In some situations the TPSE can even dominate conventionally fast transitions!

N. Rivera *et al*, "Making two-photon processes dominate one-photon processes using mid-ir phonon polaritons", PNAS, p. **201713538** (2017)

• TPSE is a rich phenomenon, with very much to be explored yet.

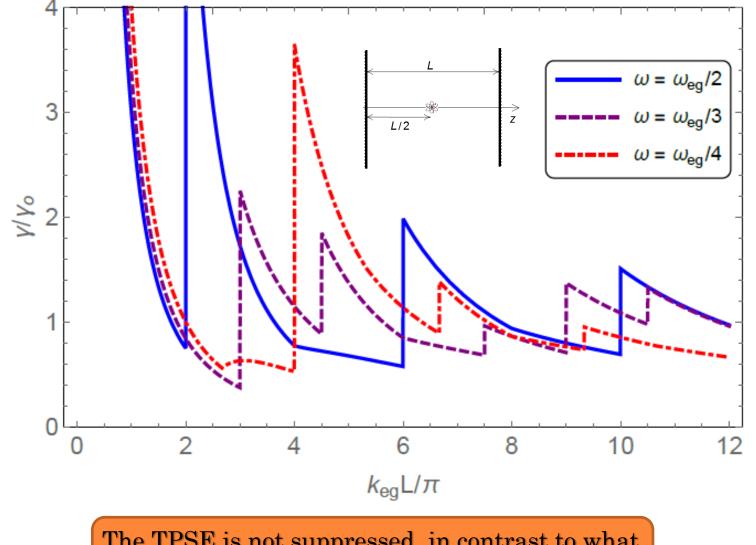


AN EMITTER BETWEEN TWO PERFECT MIRRORS (S \rightarrow S)



Abrupt changes in the spectral density due to discontinuities in the LDOS.

AN EMITTER BETWEEN TWO PERFECT MIRRORS (S \rightarrow S)



The TPSE is not suppressed, in contrast to what happens to the one-photon SE in this situation.

RELATION BETWEEN TPSE AND ONE-PHOTON SE• It is possible to show that

$$\Gamma(\mathbf{R}_e) = \int_0^{\omega_t} d\omega \gamma_0(\omega) \sum_{a,b} t_{ab}(\omega) P_a(\mathbf{R}_e, \omega) P_b(\mathbf{R}_e, \omega_t - \omega)$$

$$t_{ab}(\omega) = |\mathbb{D}_{ab}(\omega, \omega_t - \omega)|^2 / |\mathbb{D}(\omega, \omega_t - \omega)|^2$$

 $P_a(\mathbf{R}_e,\omega)$

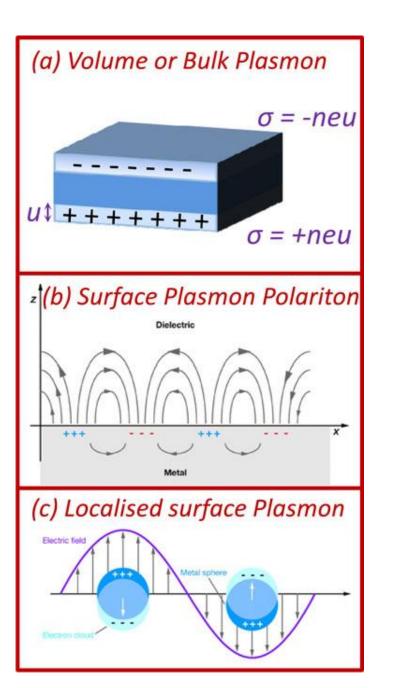
Purcell factor for an emitter at \mathbf{R}_e , with transition dipole moment oriented along $\hat{\mathbf{e}}_a(\mathbf{R}_e, \omega)$, and frequency ω .

• Once we know the **one-photon SE** rate of an emitter we can obtain immediately the **TPSE spectral density**!

TPSE near plasmonic nanostructures

PLASMONICS

• What is a plasmon?



PLASMONICS

• What is plasmonics?

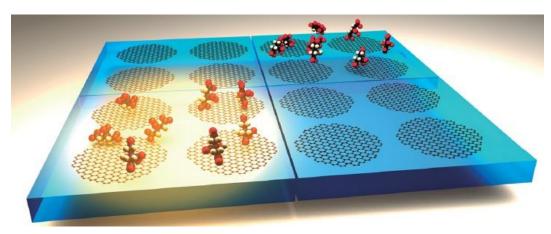
"You just have Maxwell's equations, some material properties and some boundary conditions, all classical stuff - what's new about that?"

S. A. Maier, *Plasmonics: fundamentals and applications*.

Physics!

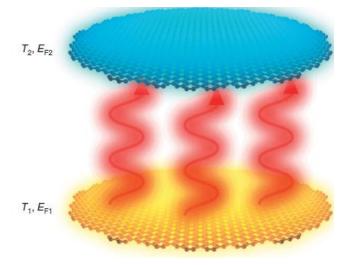
- Strong light confinement \rightarrow beyond the diffraction limit.
- Extreme enhancement of the electromagnetic field intensity → surface physics and **non-linear optics**.

PLASMONICS IN 2D SYSTEMS - GRAPHENE • Spatially resolved optical sensing in the infrared



•ACS Photonics 2017, 4, 1831–1838 •ACS Photonics 2018, 5, 8, 3282-3290

• Ultrafast radiative heat transfer

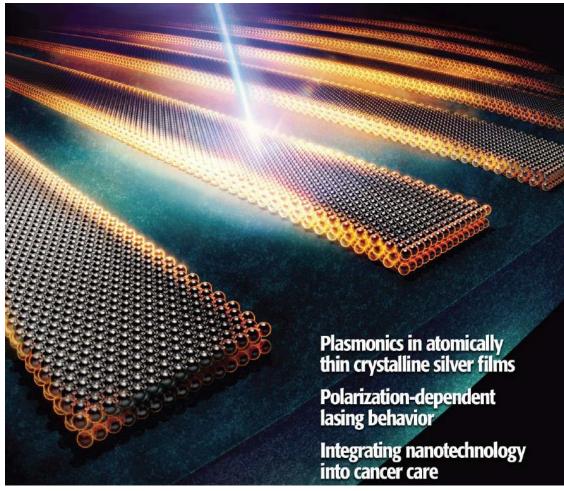


Nature Communications, 8, 2 (2017)

(QUASI-)2D NOBLE METALS

• Wide range of frequencies (visible and near-infrared)

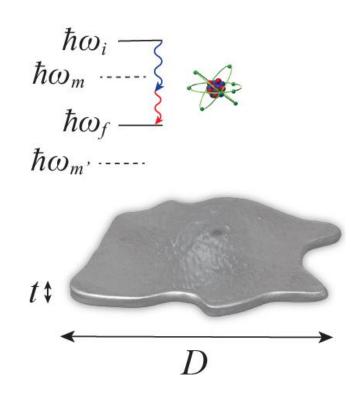
• Recent fabrication of quasi-2D metal films.



•ACS NANO,**13**, 7 (2019) •Nature Photonics, **8**, 328-333 (2019)

System under study

• An emitter near a 2D plasmonic nanostructure of arbitrary geometry.



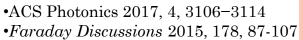
PLASMONS IN 2D NANOSTRUCTURES

• Plasmon Wave Function (**PWF**) formalism:

$$\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}) \longrightarrow Plasmon \ Wave \ Function \ j$$

• Resonance frequencies:

 $\operatorname{Re}[1/\eta_j - 1/\eta(\omega_j)] = 0 \qquad \eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$



PLASMONS IN 2D NANOSTRUCTURES

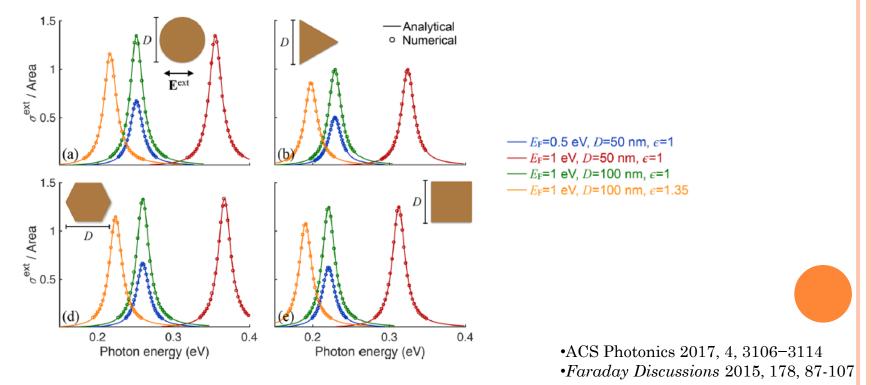
• Plasmon Wave Function (**PWF**) formalism:

$$\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}) \longrightarrow Plasmon \ Wave \ Function \ j$$

• Resonance frequencies:

 $\operatorname{Re}[1/\eta_j - 1/\eta(\omega_j)] = 0 \qquad \eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$

• Excelent agreement with numerical calculations.



PURCELL FACTORS

• The Purcell factors are numerically equal to the ratio between the power dissipated by an electric dipole near the nanostructure with respect to its free-space radiation rate.

 $P_a(\mathbf{R}_e,\omega) = W_a(\mathbf{R}_e,\omega)/W_0(\omega)$

PURCELL FACTORS

• The Purcell factors are numerically equal to the ratio between the power dissipated by an electric dipole near the nanostructure with respect to its free-space radiation rate.

$$P_a(\mathbf{R}_e,\omega) = W_a(\mathbf{R}_e,\omega)/W_0(\omega)$$

$$P_a(\mathbf{R}_e, \omega) = P_{a,nr}(\mathbf{R}_e, \omega) + P_{a,r}(\mathbf{R}_e, \omega)$$

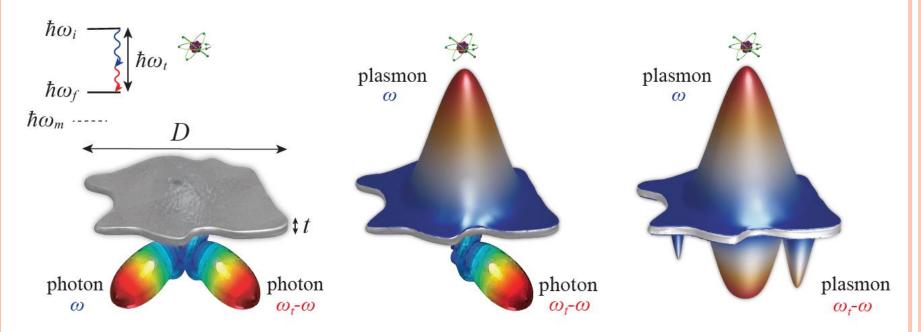
• Absorption (**plasmon emission**):

$$P_{a,nr}(\mathbf{R}_{e},\omega) = \frac{6\pi\epsilon_{0}c^{3}}{\omega^{4}|\mathbf{d}_{a}|^{2}} \int d^{3}\mathbf{R}' \operatorname{Re}\{\mathbf{J}^{*}(\mathbf{R}',\omega) \cdot \mathbf{E}(\mathbf{R}',\omega)\}$$

• Far-field radiation (**photon emission**):

$$P_{a,r}(\mathbf{R}_e,\omega) = \frac{6\pi\epsilon_0 c^3}{\omega^4 |\mathbf{d}_a|^2} \int_{R'\to\infty} d\mathbf{A}' \cdot \operatorname{Re}\{\mathbf{E}(\mathbf{R}',\omega) \times \mathbf{H}^*(\mathbf{R}',\omega)\}$$

TPSE DECAY CHANNELS



$$\gamma(\mathbf{R}_{e},\omega) = \gamma_{0}(\omega) \sum_{a,b} t_{ab}(\omega) P_{a}(\mathbf{R}_{e},\omega) P_{b}(\mathbf{R}_{e},\omega_{t}-\omega)$$
$$P_{a}(\mathbf{R}_{e},\omega) = P_{a,nr}(\mathbf{R}_{e},\omega) + P_{a,r}(\mathbf{R}_{e},\omega)$$

• Photon-photon, photon-plasmon and plasmon-plasmon states.

APPROXIMATED PURCELL FACTORS: DRUDE MODEL

$$P_{a,nr}(\mathbf{R}_e,\omega) \simeq \sum_{q=1}^{N} \frac{A_{a,q}}{\omega^2} \frac{1/2\tau}{(\omega-\omega_q)^2 + (1/2\tau)^2}$$

Plasmonic contribution \rightarrow Lorentzian resonances

APPROXIMATED PURCELL FACTORS: DRUDE MODEL

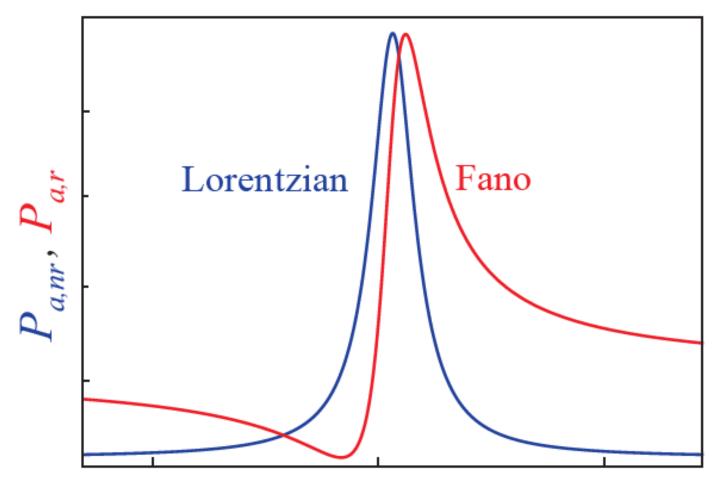
$$P_{a,nr}(\mathbf{R}_e,\omega) \simeq \sum_{q=1}^N \frac{A_{a,q}}{\omega^2} \frac{1/2\tau}{(\omega-\omega_q)^2 + (1/2\tau)^2}$$

Plasmonic contribution \rightarrow Lorentzian resonances

$$P_{a,r}(\omega) \simeq \sum_{q=1}^{N} \frac{B_{a,q}(1/2\tau)^2 + (\omega - \omega_q + f_{a,q}/2\tau)^2}{(\omega - \omega_q)^2 + (1/2\tau)^2} - (N-1)$$

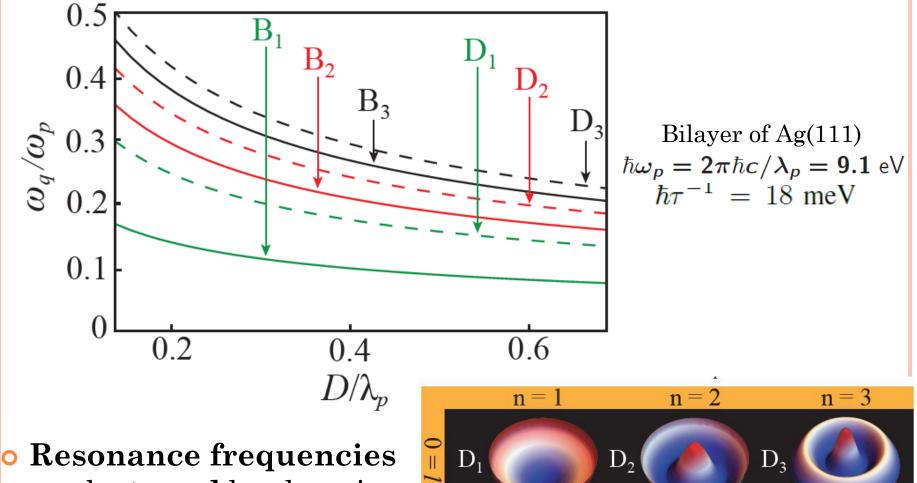
Photonic contribution \rightarrow Fano + Lorentzian resonances

APPROXIMATED RESULTS: DRUDE MODEL



ω

A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: RESONANT MODES



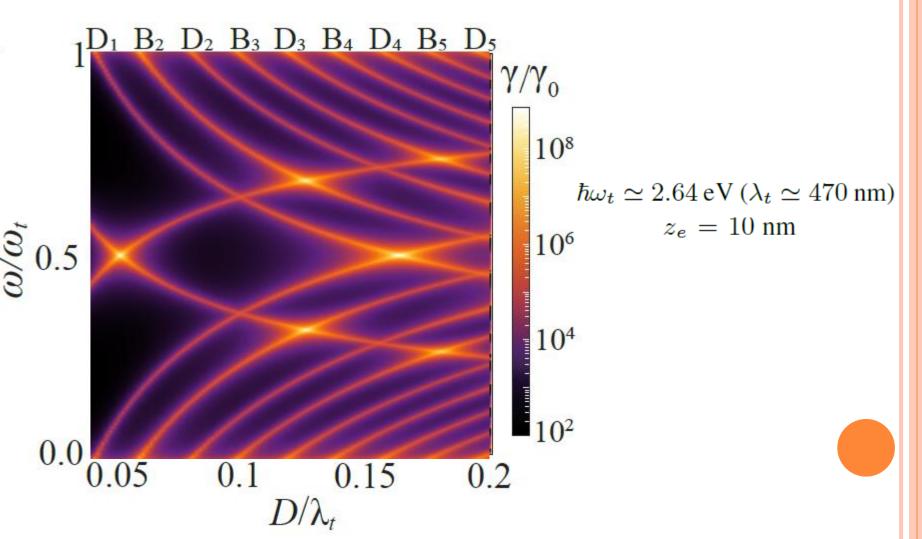
 B_1

 B_2

B,

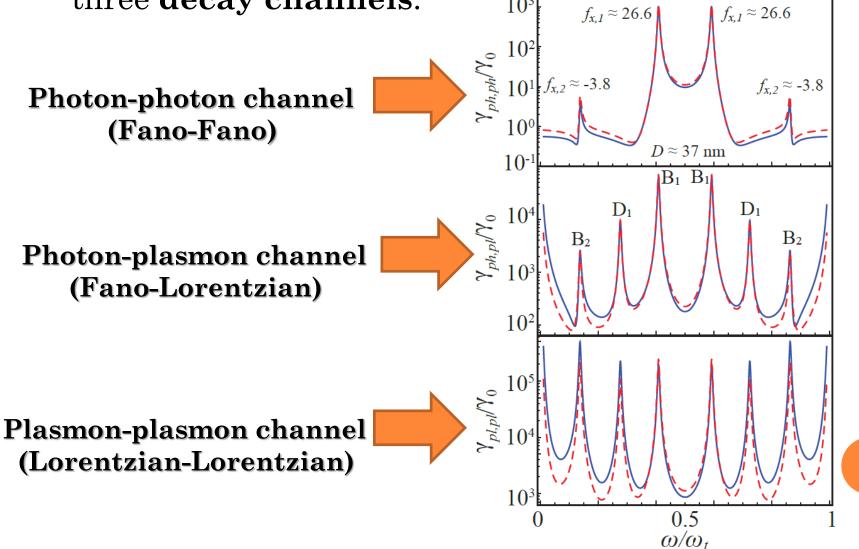
can be **tuned** by changing the **size** of the nanodisk. A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: TPSE SPECTRUM

• Crossings between Bright-Bright or Dark-Dark modes produce extreme enhancements.

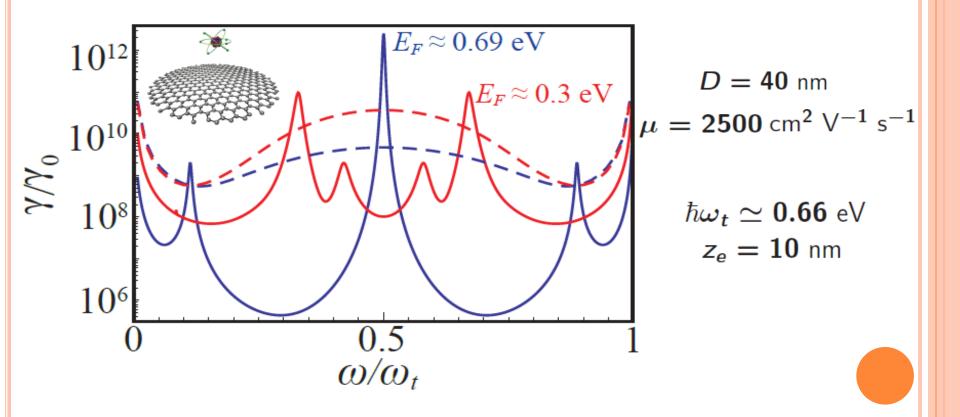


A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: DECAY CHANNELS

• Spectral line-shapes serve as **fingerprints** of the three **decay channels**.



• Enhanced selective spectral emission compared to the typical broadband spectrum of monolayers.

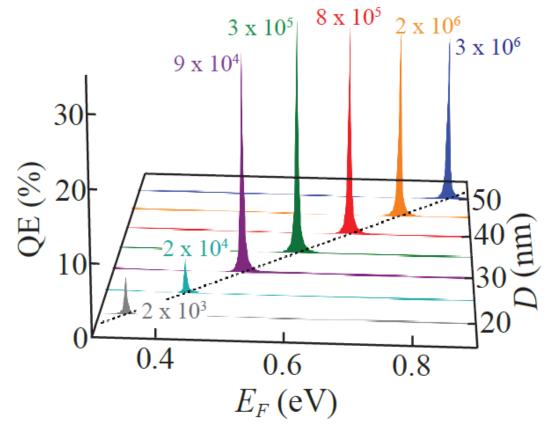


$$\begin{aligned} \mathbf{Q}\mathbf{Y}^{1q}(\omega) &= \frac{\gamma_{ph}^{1q}(\omega)}{\gamma^{1q}(\omega)} , \ \mathbf{Q}\mathbf{Y}^{\mathrm{TPSE}}(\omega) &= \frac{\gamma_{ph,ph}(\omega) + \gamma_{ph,pl}(\omega)}{\gamma(\omega)} \\ & 1 \\ & 1 \\ & 1 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.6 \\ & 0.4 \\ & 0.6 \\ & 0.8 \\ & 1.0 \\ & 1.2 \\ & E_F/\hbar\omega_t \end{aligned}$$
 The fundamental dark mode acts as an amplifier of the photon-plasmon channel, but as an attenuator of the one-photon emission pathway.

 Single photon creation via a two-quanta process can be much more efficient than standard one-photon emission.

$$QE = \Gamma_{4s \to 3s} / (\Gamma_{4s \to 3s} + \gamma_{4s \to 3p}^{1q} + \gamma_{4s \to 2p}^{1q})$$

• For any disk diameter the quantum efficiency can be optimized by tuning the Fermi energy so that $\omega_{B_1} = \omega_t/2$.



$$\mu = 10^4$$
 cm 2 V $^{-1}$ s $^{-1}$

Numbers near curves: **ph-ph Purcell factors**

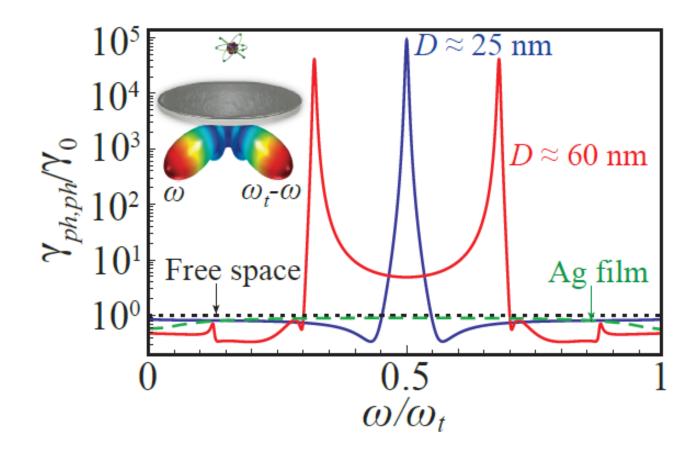
CONCLUSIONS

- It is possible to pre-select the frequencies of emission by tuning the size and doping of the nanostructure.
- 2D plasmonic nanostructures allow enhanced TPSE rate with **generation of photons**, not only plasmons.
- Surprisingly, **TPSE** can be a **single photon source** orders of magnitude more efficient than one-photon SE.
- Finite-sized plasmonic systems have many advantages over extended ones.

THANK YOU

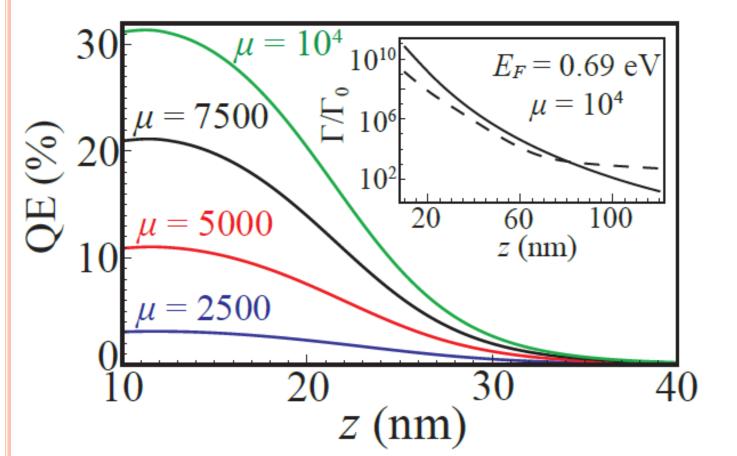
A METALLIC NANODISK CLOSE TO AN ON-AXIS QUANTUM EMITTER: PH-PH DECAY CHANNEL

• Finite size is critical to accomplish giant photonphoton production.



• Graphene nanostructures disrupt the usual unbalance between one- and two-quanta emission.

$$QE = \Gamma_{4s \to 3s} / (\Gamma_{4s \to 3s} + \gamma_{4s \to 3p}^{1q} + \gamma_{4s \to 2p}^{1q})$$



PURCELL EFFECT

- E.M. **Purcell** (**1946**): bodies in the vicinities of an emitter change its SE rate.
- Reason: the presence of the bodies affects the **boundary conditions** (BC) on the electromagnetic field.

$$\Gamma(\mathbf{R}) = \frac{\pi}{\epsilon_o \hbar} \sum_{\mathbf{k}p} \omega_k |\mathbf{d}_{eg} \cdot \mathbf{A}_{\mathbf{k}p}(\mathbf{R})|^2 \delta(\omega_k - \omega_{eg}).$$
$$\frac{\Gamma}{\Gamma_o} = \frac{6\pi c}{\omega_{eg}} \mathbf{\hat{n}}_{eg}^* \cdot \left[\mathrm{Im}\mathbb{G}(\mathbf{R}, \mathbf{R}, \omega_{eg}) \right] \cdot \mathbf{\hat{n}}_{eg}$$
$$\nabla \times \nabla \times \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) - \frac{\omega^2}{c^2} \mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \mathbb{I}\delta(\mathbf{r} - \mathbf{r}').$$

L. Novotny and B. Hecht, Principles of nano-optics. Cambridge university press, 2012.

GREEN'S FUNCTION METHOD

• The imaginary part of the Green's function can be written in terms of the field modes as

Im
$$\mathbb{G}(\mathbf{r}, \mathbf{r}', \omega) = \frac{\pi c^2}{2\omega} \sum_{\mathbf{k}p} \mathbf{A}^*_{\mathbf{k}p}(\mathbf{r}') \mathbf{A}_{\mathbf{k}p}(\mathbf{r}) \delta(\omega - \omega_k).$$

• Using the previous identity, we recover the well known expression for the TPSE rate, namely

$$\Gamma = \frac{\mu_0^2}{\pi\hbar^2} \int_0^{\omega_{eg}} d\omega \omega^2 (\omega_{eg} - \omega)^2 \mathrm{Im}\mathbb{G}_{il}(\omega) \mathrm{Im}\mathbb{G}_{jn}(\omega_{eg} - \omega)\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)\mathbb{D}_{ln}^*(\omega, \omega_{eg} - \omega).$$

N. Rivera et al., Science, vol. 353, no. 6296, pp. 263–269 (2016).

• This constitutes an **alternative demonstration** of this formula!

THE PURCELL FACTORS RELATION

• Choosing the basis which diagonalizes the Green's function we have

$$\gamma(\omega) = \frac{\mu_0^2}{\pi\hbar^2} \omega^2 (\omega_{eg} - \omega)^2 \sum_{i,j} \operatorname{Im}\mathbb{G}_{ii}(\omega) \operatorname{Im}\mathbb{G}_{jj}(\omega_{eg} - \omega) |\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2$$

• We define the **Purcell factors** as

$$P_i(\mathbf{R},\omega) := \frac{6\pi c}{\omega} \mathrm{Im}\mathbb{G}_{ii}(\mathbf{R},\mathbf{R},\omega).$$

• In this way, we can write

$$\frac{\gamma(\omega)}{\gamma_o(\omega)} = \sum_{i,j} \frac{|\mathbb{D}_{ij}(\omega, \omega_{eg} - \omega)|^2}{|\mathbb{D}(\omega, \omega_{eg} - \omega)|^2} P_i(\omega) P_j(\omega_{eg} - \omega).$$

• The **TPSE** rate **dependence** on the **local density of states** (LDOS) was made explicit! PLASMONS IN 2D NANOESTRUCTURES

• Plasmon Wave Function (**PWF**) formalism:

$$\rho_{2D}(\mathbf{r},\omega) = \frac{4\pi\epsilon_0}{D} \sum_j \frac{c_j}{1/\eta_j - 1/\eta(\omega)} v_j(\mathbf{u}),$$

$$\begin{split} v_j(\mathbf{u}) &= \nabla_{\mathbf{u}} \cdot \sqrt{f(\mathbf{u})} \mathbf{V}_j(\mathbf{u}) \not \rightarrow \textit{Plasmon Wave Functions} \\ \int d^2 \mathbf{u}' \, \mathbb{M}(\mathbf{u}, \mathbf{u}') \cdot \mathbf{V}_j(\mathbf{u}') &= \frac{1}{\eta_j} \mathbf{V}_j(\mathbf{u}) \, . \\ \mathbb{M}(\mathbf{u}, \mathbf{u}') &= \sqrt{f(\mathbf{u}) f(\mathbf{u}')} \nabla_{\mathbf{u}} \nabla_{\mathbf{u}'} |\mathbf{u} - \mathbf{u}'|^{-1} \end{split}$$

• Resonance frequencies:

 $\operatorname{Re}[1/\eta_j - 1/\eta(\omega_j)] = 0 \qquad \eta(\omega) = i\sigma(\omega)/4\pi\epsilon_0\omega D$

• External field dependence:

$$c_j = \int d^2 \mathbf{u} \, \mathbf{V}_j^*(\mathbf{u}) \cdot \boldsymbol{\mathcal{E}}^{ext}(\mathbf{u}, \omega)$$

•ACS Photonics 2017, 4, 3106–3114 •Faraday Discussions 2015, 178, 87-107

POWER DISSIPATED BY ABSORPTION

$$\mathbf{J}(\mathbf{R}',\omega) = \mathbf{K}(\mathbf{r}',\omega)\delta(z') = \sigma(\omega)f(\mathbf{r}')\mathbf{E}_{\parallel}(\mathbf{r}',\omega)\delta(z')$$

$$+$$

$$\boldsymbol{\mathcal{E}}(\mathbf{u},\omega) = \sum_{\alpha} \frac{c_{\alpha}}{1-\eta(\omega)/\eta_{\alpha}} \mathbf{V}_{\alpha}(\mathbf{u}), c_{\alpha} = \int d^{2}\mathbf{u} \mathbf{V}_{\alpha}^{*}(\mathbf{u}) \cdot \boldsymbol{\mathcal{E}}^{ext}(\mathbf{u},\omega)$$

$$\mathbf{E}^{ext}(\mathbf{R}',\omega) = \frac{1}{4\pi\epsilon_{0}} \nabla \mathbf{d}_{a} \cdot \nabla |\mathbf{R} - \mathbf{R}'|^{-1}$$

$$+$$

$$\int d^{2}\mathbf{u} \mathbf{V}_{\alpha}^{*}(\mathbf{u}) \cdot \mathbf{V}_{\alpha'}(\mathbf{u}) = \delta_{\alpha\alpha'}.$$

$$P_{a,nr}(\mathbf{R}_{e},\omega) = \frac{3c^{3}}{2D^{3}\omega^{3}} \operatorname{Im} \sum_{\alpha} \hat{\mathbf{e}}_{a} \cdot \frac{\mathbf{F}_{\alpha}(\mathbf{R}_{e}) \otimes \mathbf{F}_{\alpha}^{*}(\mathbf{R}_{e})}{1/\eta(\omega) - 1/\eta_{\alpha}} \cdot \hat{\mathbf{e}}_{a}.$$

$$\mathbf{F}_{\alpha}(\mathbf{R}_{e}) = \int d^{2}\mathbf{u}' \frac{v_{\alpha}(\mathbf{u}')(\mathbf{R}_{e}/D - \mathbf{u}')}{|\mathbf{R}_{e}/D - \mathbf{u}'|^{3}}$$

POWER DISSIPATED BY RADIATION

• The system is spatially localized, therefore we can make a multipole expansion. The first contribution to the power radiated by the system is

$$\begin{split} P_{a,r}(\mathbf{R}_{e},\omega) \simeq \frac{|\mathbf{d}_{a} + \mathbf{d}_{a,ind}(\mathbf{R}_{e},\omega)|^{2}}{|\mathbf{d}_{a}|^{2}} \\ \mathbf{d}_{a,ind}(\mathbf{R}_{e},\omega) &= \int d^{2}\mathbf{r} \, \mathbf{r} \rho_{2D}(\mathbf{r},\omega) \\ \rho_{2D}(\mathbf{r},\omega) &= \frac{4\pi\epsilon_{0}}{D} \sum_{\alpha} \frac{c_{\alpha}}{1/\eta_{\alpha} - 1/\eta(\omega)} v_{\alpha}(\mathbf{u}) \\ & & & & \\ P_{a,r}(\mathbf{R}_{e},\omega) &= \left| \hat{\mathbf{e}}_{a} + \sum_{\alpha} \frac{\zeta_{\alpha} \otimes \mathbf{F}_{\alpha}^{*}(\mathbf{R}_{e})}{1/\eta_{\alpha} - 1/\eta(\omega)} \cdot \hat{\mathbf{e}}_{a} \right|^{2} . \quad \zeta_{\alpha} = \int d^{2}\mathbf{u} \, \mathbf{u} v_{\alpha}(\mathbf{u}) \end{split}$$

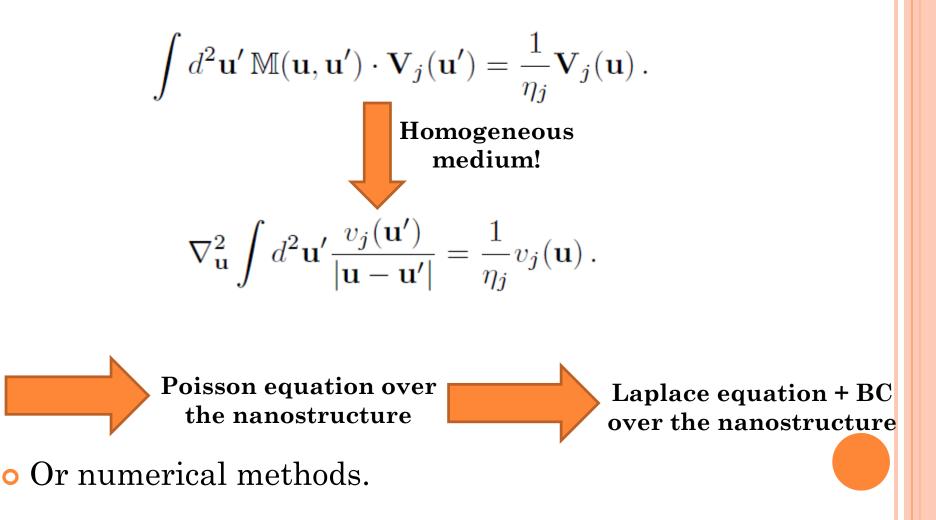
APPROXIMATED RESULTS: DRUDE MODEL

$$P_{a,nr}(\mathbf{R}_e,\omega) \simeq \sum_{q=1}^N \frac{A_{a,q}}{\omega^2} \frac{1/2\tau}{(\omega-\omega_q)^2 + (1/2\tau)^2}$$
$$A_{a,q} = \frac{3c^3\omega_p^2 t}{16\pi D^4\omega_q^2} \sum_{j=1}^{g_q} |\hat{\mathbf{e}}_a \cdot \mathbf{F}_{q,j}(\mathbf{R}_e)|^2.$$

$$P_{a,r}(\omega) \simeq \sum_{q=1}^{N} \frac{B_{a,q}(1/2\tau)^2 + (\omega - \omega_q + f_{a,q}/2\tau)^2}{(\omega - \omega_q)^2 + (1/2\tau)^2} - (N-1)$$
$$f_{a,q} = \frac{\omega_p^2 \tau t}{4\pi D \omega_q} \sum_{j=1}^{g_q} \operatorname{Re} \left[\hat{\mathbf{e}}_a \cdot \mathbf{F}_{q,j}^*(\mathbf{R}_e) \zeta_{a;q,j}^{\parallel} \right]$$

PLASMONS IN 2D NANOSTRUCTURES

• How do we obtain the PWFs?



PLASMONS IN A NANODISK

• Analytical solution!

PWFs =
$$R_{ln}(u)e^{il\phi}$$
. $R_{ln}(u) = (2u)^{|l|} \sum_{m'} a_{m'}^{ln} P_{m'}^{(|l|,0)} (1 - 8u^2)$

$$\mathbb{G}^l \mathbf{a}^{ln} = -4\pi \eta_{ln} \mathbb{K}^l \mathbf{a}^{ln},$$

$$\mathbb{K}^{l}_{mm'} = \frac{(-1)^{m-m'+1}}{\pi[4(m-m')^2 - 1](|l| + m + m' + 1/2)(|l| + m + m' + 3/2)}, \quad m, m' = 0, 1, 2, 3...$$

$$\begin{split} \mathbb{G}^{l}_{mm'} &= \frac{\delta_{m0}\delta_{m'0}}{8|l|(|l|+1)^{2}} + \frac{\delta_{mm'}}{4(|l|+2m')(|l|+2m'+1)(|l|+2m'+2)} + \frac{\delta_{m+1,m'}}{8(|l|+2m+1)(|l|+2m+2)(|l|+2m+3)} \\ &+ \frac{\delta_{m,m'+1}}{8(|l|+2m'+1)(|l|+2m'+2)(|l|+2m'+3)}, \quad m,m'=0,1,2,3... \end{split}$$

•PRB 1986, **33**, 5221 •PRB 2016, **93**, 035426